OWASP
¥ AppSec EU

N v
1 8th to 12th ¥ waterfront
of May Conference
2017 Center

5/12/17

lemg Mobile
AppSec

Sven a.k.a. sushi2k
Bernhard a.k.a. bernhard

\VVANTAGEPOINT

5/12/17

Our "Products”

Mobile

AppSec . i

Checklist Mobile Security
Testing Guide

Excel ®

i~ MSTG Target 700+ pages
Mobile : ~
G & Secummy 50% done
Mobile AppSec A pp Sec el TESTING
RISt \/crification .. GuIOE Free Ebook & Real,

Standard Printed Book!

.Aﬁ PDF Download
T ~90% done

OWASP
AppSec EU

OWASP Mobile Application Security
Verification Standard (MASVS)
e Started as a fork of the ASVS @ounsp | sunderd @3)

* Formalizes best practices Mobile AppSec
* Mobile-specific, high-level, OS-agnostic Verification
System credential storage facilities are used appropriately to store a;
sensitive data, such as user credentials or cryptographic keys.
No sensitive data is written to application logs. v /
No sensitive data is shared with third parties unless it is a necessary part 7

of the architecture.

The keyboard cache is disabled on text inputs that process sensitive data. v ¢

The clipboard is deactivated on text fields that may contain sensitive data. v ¢

5/12/17

d

Questions, questions, questions...

Sample Question: Do we recommend using E2E encryption?

Pros Cons
* Additional security layer * Introduces additional complexity
* Protects data in case TLS tunnel * Implementation prone to errors
is compromised * Adds security by obscurity
* Protects data from exposure to * Makes testing difficult
intermediate systems * False sense of security

* Doesn’t add much security beyond
what TLS already provides

Check out the GitHub issues...

|’ OWASP
AppSec EU

43 Security Requirements
19 Defense-in-Depth Measures

13 Anti-Reversing Controls

OCCAM'S RAZOR

Sure there are simpler ways to catch that bird,
but the complicated ones kick ass

5/12/17

OWARSP

é;\\ 7 i

Keeping Things Flexible: Requirement “Levels”

* IMASVS-L1: Security best practices applicable to all mobile apps.
* MASVS-L2: Defense-in-depth controls for sensitive apps (e.g. financial transactions)
* MASVS-R: Optional tamper-proofing to counter specific client-side threats

L2 — Defense-in-Depth

L1 — Standard Security

OWASP
AppSec EU

Level 1 vs. Level 2

Data is encrypted on the network using TLS. The secure channel is used
consistently throughout the app.

The TLS settings are in line with current best practices, or as close as Mlght be overkill
possible if the mobile operating system does not support the o/ for some apps!
recommended standards.

The app verifies the X.509 certificate of the remote endpoint when the
secure channel is established. Only certificates signed by a valid CA are v /
accepted.

The app either uses its own certificate store, or pins the endpoint

certificate or public key, and subsequently does not establish connections /
with endpoints that offer a different certificate or key, even if signed by a

trusted CA.

5/12/17

/ \ A

How To Use the MASVS

* During early stages of development:
* As a basis for design decisions
* To determine security requirements early on
* Saves a ton of cost later

Example:

Security controls are never enforced only on the client side, but on the /
respective remote endpoints.

How To Use the MASVS

* In mobile app security testing (together with checklist and
testing guide).

MASVS on GitHub

http://github.com/OWASP/owasp-masvs

5/12/17

Y

What is the Mobile Security Testing Guide (MSTG)?

What is the Mobile Security Testing Guide (MSTG)?

* Manual for testing security maturity of mobile Apps

* Maps directly to the MASVS requirements
* Focusing on iOS and Android native applications

* Goalis to ensure completeness of mobile app security testing through
a consistent testing methodology

* For security checks of the endpoint the OWASP Web Application
Testing Guide should be used

5/12/17

/ \ A

How does the document structure look like?

* Testing Processes and Techniques
* Platform Overview
* Security Testing Basics

* Test Cases

* Reverse Engineering and Cracking

Key Topics of MSTG

Testing Local Storage for sensitive information
* Clarify how data can be stored on iOS and Android
* Check the usage of cryptographic functions

* Check backups for sensitive data

5/12/17

/A\

Key Topics of MSTG

Testing Platform Interaction

* App permissions

Verify usage of Interprocess communication (IPC)

Check the implementation of WebViews

Biometric Authentication (Touch ID)

Key Topics of MSTG
Testing Code Quality and Build Settings

* \Verify that security features are activated (e.g.
ProGuard, compiler settings)

* Check 3rd party libraries

* Check for debugging code, verbose error logging and
exception handling

5/12/17

/ \ A

How is the MSTG organized?

The MSTG is hosted in the OWASP GitHub repo (Work in Progress)
https://github.com/OWASP/owasp-mstg

Can already be read online as GitBook
https://b-mueller.gitbooks.io/owasp-mobile-security-testing-guide/content/

Export to Word is possible through script:
https://github.com/OWASP/owasp-mstg/blob/master/Tools/generate document.sh

Reverse Engineering in the MSTG

Security Testers have no good
way of dealing with mobile
software protections

5/12/17

d

Pentesters are confused

Report with critical security issue: « Lack of Obfuscation »
What are the developers supposed to do?

* MinifyEnabled = true?

* Maybe encrypt strings?

* Apply complex control flow obfuscation?
* Maybe use some whitebox crypto?

We want to develop a proper assessment methodology.

Skills Needed For Assessing Anti-Reversing
Schemes

1. Determine whether using software protections are used appropriately

* Every software protection scheme can be defeated

* Never to be used as a replacement for security controls

* Viable uses: IP protection, DRM, preventing modding / cheating, hardening
against code injection / instrumentation

2. Hands-on Reversing & Cracking Skills
* Traditional the domain of malware reversers

10

5/12/17

OWARSP

/J\ ‘

Reverse Engineering Content in the MSTG

* Building a reverse engineering requirement for free
» Static and dynamic analysis

You should now find the decompiled sources in the directory uncrackable-Level1/src . To Uncrackable1
view the sources, a simple text editor (preferably with syntax highlighting) is fine, but loading o | B Project
the code into a Java IDE makes navigation easier. Let's import the code into Intelli, which 2 v Cauncra o w2 In the following section. we'l show how to solve UnCrackable A
g de DB only. Note that this is not an effcient way to solve this crad]
also gets us on-device debugging functionality as a bonus. S .
® 3app i faster using Frida and ofher methods, which we'l infroduce latel
Open IntelliJ and select "Android" as the project type in the lefttab of the "New Project” p £l When this function retums, RO contains a pointer to the newly constructed UTF string. This however well an an introdcution to the capabilies of the Java d
. ; . o g) isthe final retum value, so RO i left unchanged and the function ends.
dialog. Enter "L 1" as the application name and g" as the company g
name. This results in the package name "sg.vantagepoint.uncrackable1”, which matches the g . . Repackaging
original package name. Using a matching package name is important if you want to attach Ll Debugging and Tracing Every debugger-enabled process runs an exra thread for hand|
the debugger to the running app later on, as Intel uses the package name to idenfy the 5 Sofar, we've been using static analysis techniques without ever running our target apps. In this threed is started only for apps that have the |andres ety
correct process. H the real world - especially when reversing more complex apps or malware - you'l find that Manifest file's [ESPEITEREIRE] element. This is typioally the cont
& pure static analysis is very difficult. Observing and manipulating an app during runtime shipped to end users.
Q New Project v makes it much, much easier to decipher its behaviour. Next, we'l have a look at dynamic When reverse engineering apps, you'l often only have access
e B analysis methods that help you do just that target app. Release builds are not meant to be debugged - afe}
N " Android apps support two different types of debugging: Java-runtime-level debugging using are for. If the system property ro.debuggable set to "0", Android}
Configure your new project i’wgnnpe" © Java Debug Wire Protocol (JDWP) and Linux/Unix-style ptrace-based debugging on the native debugging of release builds, and although this is easy to}
intothe OW e aiive layer, both of which are valuable for reverse engineers. encounter some limitations, such as a lack of line breakpoints.
folder instead of imperfect debugger is still an invaluable tool - being able to insf
: Activating Developer Options. program makes it a fot easier to understand what's going on.
ot e Uncrackabiel
Company Domai: [vartagepoinsg Since Android 4.2, the "Developer options" submen is hidden by default in the Settings To "convert" a release buid release into a debuggable buld, yof
Package rame: sgvantagepon.uncrackab o app. To aciivate it, you need to tap the "Build number" section of the "About phone" view 7 pp's Manifest ile. This modification breaks the code signature,
times. Note that the location of the build number field can vary slightly on different devices - the the altered APK archive.
I the next dialog, pick any API number - we dorit want to actually compile the project, 50 it for example, on LG Phones, itis found under "About phone > Software information” instead. 7o dotis, you frstnoed a codo sgning cetcte.fyou have
realy dossnit matte. Click "next” and chooss "Add no Activit”, then clck “fnsh” Once you have done this, "Developer options” will be shown at bottom of the Settings menu. Stidio bafore e IDE nos arousy eroated 8 cebug keystor a
Once developer options are activated, debugging can be enabled with the "USB debugging”
e P N . swoe/ .androsa/debug.keystare . The default password for tis

OWASP
AppSec EU

Reverse Engineering Content in the MSTG

* Tampering, patching and runtime instrumentation

XposedBridge . log("Caught root check!"); l
paran. setResult(false);
}
Hi
}
3 Frida injects a complete JavaScript runtime into the process, along with a powerful API that Your Android device doesn't nee}
provides a wealth of useful functionality, including calling and hooking of native functions and and we assume a rooted device
injecting structured data into memory. It also supports interaction with the Android Java binary from the Frida releases p:
Dynamic Instrumentation with FRIDA runtime, such as interacting with objects inside the VM. version number) matches the ve|
the latest version of Frida, but if
Frida "lets you inject snippets of JavaScript or your own library into - 5 - Jine tool:
i , +119] e it was origi Your tool Target e fook
macOS, Linux, iOS, Android, and QNX" L'%1. while it was originally u get app
Javascript runtime, since version 9 Frida now uses Duktape internal Soript $ frida --version

9.1.10
$ wget https://github.com/fri
roid-arm.xz

Code injection can be achieved in different ways. For example, Xpg
permanent modifications to the Android app loader that provide hoq
every time a new process is started. In contrast, Frida achieves cod
code directly into process memory. The process is outlined in a bit

Copy frida-server to the device &

When you "attach" Frida to a running app, it uses ptrace to hijack a p2p DBus across
. N $ adb push frida-server /data,

process. This thread is used to allocate a chunk of memory and poj lqu@:lm;h"w’ $ adb shell "chmod 755 /data/

bootstrapper. The bootstrapper starts a fresh thread, connects to th) i $ adb shell "su -c /data/local

running on the device, and loads a dynamically generated library filt .

agent and instrumentation code. The original, hijacked thread is res N B o N B With frida-server running, you sh

and resumed. and ion of the process continues as usual dall

11

5/12/17

OWARSP

/J\ ‘

Reverse Engineering Content in the MSTG

* Advanced topics: Program analysis, writing kernel modules, customizing Android...

|nsta||ing Angr So far, so good, but we really know nothing about how a valid license key might look like.
Where do we start? Let's fire up IDA Pro to get a first good look at what is happening.
Angr is written in Python 2 and available from PyP|. It is easy to install on *nix operating .

systems and Mac OS using pip:

$ pip install angr

Itis recommended to create a dedicated virtual environment with Virtualenv as some of its
dependencies contain forked versions Z3 and PyVEX that overwrite the original versions
(you may skip this step if you don't use these libraries for anything else - on the other hand,
using Virtualeny is generally a good idea).

lengih check

o 2ams e sirnen) _—

Quite comprehensive documentation for angr is available on Gitbooks, including an
installation guide, tutorials and usage examples [5]. A complete AP reference is also
available [6].

Using the Disassembler Backends

Symbolic Execution

Symbolic execution allows you to determine the conditions necessary to reach a specific
target. It does this by translating the program’s semantics into a logical formula, whereby
some variables are represented as symbols with specific constraints. By resolving the
constraints, you can find out the conditions necessary so that some branch of the program

The main function is located at address 0x1874 in the disassembly (note that this is a PIE-
enabled binary, and IDA Pro chooses 0x0 as the image base address). Function names

OWASP
AppSec EU

Testing Anti-Reversing Defenses

* Root Detection

* Anti-Debugging

* Detecting Reverse Engineering Tools
e Emulator Detection / Anti-Emulation
* File and Memory Integrity Checks

* Device Binding

* Obfuscation

12

5/12/17

P

(|’ owRsP
/’ . AppSec EU

Some Original Research

* Android ART: Anti-JDWP debugging by manipulating JDWP-related vtables
(JdwpSocketState / JdwpAdbState)
* Frida Detection
* Frida server detection by local portscan
* Memory scan to detect Frida agent/gadget artefacts
* Some variations of ptrace-based native anti-debugging

See chapter “Testing Anti-Reversing Defenses”

o

t OWARSP
AppSec EU

« UnCrackable Mobile Apps »

https://github.com/OWASP/owasp-mstg/tree/master/Crackmes

13

Ongoing Work

Obfuscation Metrics
https://github.com/b-mueller/obfuscation-metrics
Assessment Methodology

https://github.com/OWASP/owasp-mstg/blob/master/Document/
0x07b-Assessing-Anti-Reverse-Engineering-Schemes.md

Help is always needed!

5/12/17

Checklist

14

5/12/17

A 9

Connecting the Dots: The Checklist

Preparation
* Define MASVS Level used for testing (L1, L2 with/without Resiliency)
* Allinvolved parties need to agree on the decisions made

* Decisions made here are the basis for all security testing

A 9

Connecting the Dots: The Checklist

Preparation
* Define MASVS Level used for testing (L1, L2 with/without Resiliency)
* Allinvolved parties need to agree on the decisions made

* Decisions made here are the basis for all security testing

15

5/12/17

OWARSP

/J\ h

Connecting the Dots: The Checklist
Mobile App Security Testing

* Walk through the applicable requirements one-by-one
* Links are available to the respective test cases in the MSTG

* CoversiOS and Android Test cases including additional Resiliency Test Cases

OWASP
AppSec EU

Project
Le:::rs Co-Authors Top Contributors Contributors Reviewers
Authors
Romuald Jin Kung Ong,
Szkudlarek, Alexander Antukh, Michael Helwig, Oguzhan Topgul, Pishu
Francesco Gerhard Wagner, Mahtani, DO0Ogs, Stefan Streichsbier,
Bernhard . X K K Anant
Stillavato, Ryan Teoh, Daniel Ben Actis, Anatoly Rosencrantz, Ali .
Mueller, . . X i Shrivastava,
Pawel Rzepa, Ramirez Martin, Yazdani, Sebastian Banescu, Prabhant .
Sven i , . R . Stephanie
. Abdessamad Claudio André, Singh, Romantic668, Stephen Corbiaux,
Schleier . Vanroelen
Temmar, Prathan Demonbensa, Jeroen Willemsen,
Slawomir Phongthiproek, Anuruddha (L30si13nT), Ben Gardiner
Kosowski Luander Ribeiro

16

5/12/17

/4
How To Get Started Contributing

RTFM: https://github.com/OWASP/owasp-mstg/blob/master/README.md

Slack: https://owasp.slack.com/messages/project-mobile_omtg/details/
Slack Account Signup: http://owasp.herokuapp.com/

Project Dashboard: https://github.com/OWASP/owasp-mstg/projects/1

Thank you. Any questions?

bernhard.mueller@owasp.org
YW @muellerberndt

sven.schleier@owasp.org
YW @bsd_daemon

Pictures are partly from the https://thenounproject.com/

17

