

@scriptingxss

Don’t Get Caught Em-bed:Finding and
Preventing Vulns at its Lowest Level

Aaron Guzman
@scriptingxss

#Whoami
Aaron Guzman

@scriptingxss
��

@scriptingxss

Embedded Devices & Technology
What does that even mean???

@scriptingxss

Embedded == IoT

The World of Embedded

@scriptingxss

@scriptingxss

2016 Embedded Threats in the Wild
✖ Medical

○ Insulin pumps (CVE-2016-5084-6)
○ Clear Text Comms

✖ Consumer
○ More Backdoors
○ Command Injection
○ Mirai ʵ
○ Connected Vehicles

✖ Commercial
○ Cameras
○ Ransomware (CC Machines)

✖ Industrial Control Systems
○ Hardcoded Passwords

@scriptingxss

Mirai was hugeeeee!!!!

Image provided by ThreatPost

@scriptingxss

400lb hacker

@scriptingxss

Hajime vs BrickerBot vs Persirai

@scriptingxss

Attackers be like

@scriptingxss

Found Using - Firmware exploitation Methodology
1. Obtaining firmware
2. Analyzing firmware
3. Extracting the filesystem
4. Mounting file systems
5. Analyzing filesystem contents
6. Emulating firmware for dynamic & runtime

analysis
http://bit.ly/FirmwareAnalysisTools

@scriptingxss

PCB

ODM

CSP

OEM

BSP

XiongMai
Technologies

The reason why!

@scriptingxss

Common Operating systems
✖ Embedded Linux

○ Android
○ Old..like, really old and New kernels

✖ Real Time Operating Systems (RTOS)
○ VxWorks
○ QNX (Blackberry)
○ MQX
○ Green Hills

✖ Windows Embedded Ƶ
✖ Windows IoT Core

@scriptingxss

@scriptingxss

Best Practices to secure embedded software
1. Buffer and Stack Overflow Protection
2. Injection Protections
3. Firmware Updates and Cryptographic Signatures
4. Securing Sensitive Information
5. Identity Management
6. Embedded Framework and C-Based Toolchain

Hardening
7. Usage of Debugging Code and Interfaces
8. Transport Layer Security
9. Usage of Data Collection and Storage - Privacy

10. Third Party Code and Components

@scriptingxss

Best Practices to secure embedded software

11. Threat Modeling

@scriptingxss

https://scriptingxss.gitbooks.io/embedded-
application-security-best-practices/

https://scriptingxss.gitbooks.io/embedded-application-security-best-practices/
https://scriptingxss.gitbooks.io/embedded-application-security-best-practices/
https://scriptingxss.gitbooks.io/embedded-application-security-best-practices/

@scriptingxss

✖ Prevent usage of dangerous C Functions
○ find . -type f -name '.c' -print0|xargs -0 grep -e

'strncpy.strlen'|wc -l
✖ Use safe equivalent functions for known vulnerable functions

○ gets() -> fgets()
✖ Ensure secure compiler flags or switches are utilized upon each

firmware build. (e.g. -fPIE, -fstack-protector-all,
-Wl,-z,noexecstack, -Wl,-z,noexecheap)

✖ Enable stack protection in embedded build systems (Buildroot &
Yocto)

Buffer and Stack Overflow Protection

@scriptingxss

@scriptingxss

@scriptingxss

Injection Prevention
✖ Whitelist accepted commands
✖ Avoid utilizing user data into

operation system commands
✖ Validate user input
✖ Context output encode

characters
✖ Commix

https://github.com/stasinopoulos/commix
https://github.com/stasinopoulos/commix

enum { BUFFERSIZE = 512 };

void func(const char *input) {
 char cmdbuf[BUFFERSIZE];
 int len_wanted = snprintf(cmdbuf, BUFFERSIZE,
 "any_cmd '%s'", input);
 if (len_wanted >= BUFFERSIZE) {
 /* Handle error */
 } else if (len_wanted < 0) {
 /* Handle error */
 } else if (system(cmdbuf) == -1) {
 /* Handle error */
 }
}

Injection Payload:
any_cmd ‘happy'; useradd
'attacker’

Injection Example

@scriptingxss

Firmware Updates
✖ Updates over TLS
✖ Automatic or scheduled updates

○ *Medical device cases
○ Force updates

✖ Anti-downgrade (anti-rollback) protections
✖ Cryptographically sign and verify updates
✖ Changelogs include security related

vulnerabilities fixed
✖ Firmware versions are clearly displayed.

@scriptingxss

Verifying Signed Packages
Downloading the kernel images
wget https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.6.6.tar.xz
wget https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.6.6.tar.sign

Download the public key from a PGP keyserver in order to verify the signature.
gpg2 --keyserver hkp://keys.gnupg.net --recv-keys 38DBBDC86092693E
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 38DBBDC86092693E: public key "Greg Kroah-Hartman (Linux kernel stable
release signing key) <greg@kroah.com>" imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.6.6.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.6.6.tar.sign

@scriptingxss

Securing Sensitive Information
✖ Do not hardcode secrets such as:

○ passwords, usernames, tokens, private keys, PII or
similar variants

✖ Use a security element (SE) or Trusted Execution
Environment (TEE)

✖ Do not store secrets in an unprotected storage
locations
○ EEPROM or other flash

@scriptingxss

@scriptingxss

CVE-2017-8224 - Backdoor account
root:1ybdHbPDn$ii9aEIFNiolBbM
9QxW9mr0:0:0::/root:/bin/sh

@scriptingxss

Identity Management
✖ Over TLS*
✖ Password change upon installation**
✖ Separation of accounts for

○ internal web management
○ internal console access
○ remote web management
○ remote console access

✖ SessionIds and Cookies
○ Not in the URL
○ Secure and HttpOnly
○ Randomized and invalidated upon logout

✖ EEPROM & UART complex passwords

@scriptingxss

Embedded Framework Hardening
✖ Services such as SSH have a secure password

created.
✖ Remove unused language interpreters
✖ Remove dead code from unused libs
✖ Remove unused shell interpreters
✖ Remove legacy insecure daemons (Telnet, FTP,

TFTP)
✖ Iterative threat models..please..thanks :)

@scriptingxss

@scriptingxss

@scriptingxss

Usage of Debugging Code and Interfaces
✖ Backdoor code with root privilege

○ Customer support
○ Debugging purposes

✖ Third party libraries, SDKs, and binary images
need review

✖ Liability via service agreements to ODMs and
third-parties

✖ Soooooooooooooo commonʰ

@scriptingxss

@scriptingxss

Transport Layer Security
✖ Use TLS 1.2 (or highest possible)
✖ Validate the certificate public key, hostname, and chain.
✖ Ensure new certificates and their chains use SHA256 for

signing
✖ Disable deprecated SSL and early TLS versions.
✖ Disable deprecated, NULL and weak cipher suites.
✖ Ensure proper certificate update features are available

upon expiration.
✖ Verify TLS configs with nmap --script

ssl-enum-ciphers.nse, TestSSLServer.jar, sslscan and/or
sslyze

@scriptingxss

@scriptingxss

��

��

@scriptingxss

Usage of Data Collection and Storage
✖ Privacy-by-design

○ Acquire only data for business and/or operational
purpose.

✖ Transparency by including details on
information being collected, stored, and
distributed via privacy policies.

✖ Allow the device owner to reset or remove
their personal data before transfer to another
user or destruction.

@scriptingxss

Third Party Code and Components
✖ Bill of materials
✖ Check against vulnerabilities DBs
✖ Loads of free tools to help

○ Retirejs - JavaScript
○ LibScanner - Yocto Build
○ NSP - NodeJS
○ Lynis - OS hardening..
○ OWASP ZAP - Web Testing

✖ Review changelogs of toolchains, software packages, and
libraries

✖ Utilize package managers (opkg, ipkg, rpm etc...) or
custom update mechanisms for misc libraries

./cli.py --format yocto
"path/to/installed-packages.txt"
dbs/ > cve_test.xml

#tail cve_test.xml

<failure> Medium (6.8) - Use-after-free vulnerability in libxml2 through 2.9.4,
as used in Google Chrome before 52.0.2743.82, allows remote attackers to cause
a denial of service or possibly have unspecified other impact via vectors
related to the XPointer range-to function.

CVE Published on: 2016-07-23
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-5131 </failure>

</testcase>

<testcase id="CVE-2016-9318" name="CVE-2016-9318" classname="libxml2 - 2.9.4"
time="0">

<failure> Medium (6.8) - libxml2 2.9.4 and earlier, as used in XMLSec 1.2.23 and
earlier and other products, does not offer a flag directly indicating that the
current document may be read but other files may not be opened, which makes it
easier for remote attackers to conduct XML External Entity (XXE) attacks via a
crafted document.

CVE Published on: 2016-11-15
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-9318 </failure>

</testcase>

</testsuite>

@scriptingxss

Rinse & Repeat

✖ Continuous threat models
✖ Continuous testing
✖ Update update update
✖ Disclosure policy (ISO 29147)
✖ Involvement in the community

@scriptingxss

Closing
Thoughts

@scriptingxss

@scriptingxss

@scriptingxss

@scriptingxss

Thank you!!!
Questions?�

Aaron Guzman
Aaron.guzman at owasp.org

