
8-12 May, 2017

Security In The Land of Microservices
Jack Mannino

Who Am I?

• Jack Mannino

– CEO @ nVisium

– Banned from computers by his co-workers

– Does most of his development in Scala

– Has a love/hate relationship with microservices

• From experience building them

What’s This All About?

• Microservice pattern and what’s unique

• Asset and Data Inventory

• Authentication

• Access Control and Identity Management

• Securely Sharing Secrets

• RASP, Top 10 lists

What Are Microservices?

The term "Microservice Architecture" has sprung up
over the last few years to describe a particular way of
designing software applications as suites of
independently deployable services. While there is no
precise definition of this architectural style, there are
certain common characteristics around organization
around business capability, automated deployment,
intelligence in the endpoints, and decentralized
control of languages and data. - Martin Fowler

Properties of Microservices

✓Independently deployable services

✓Decentralized management and governance

✓Structured around business capabilities

✓Resilient to failures and contagion between
services

✓“Smart endpoints, dumb pipes”

What Are Microservices?

Microservices simplify everything

Wrong

SOA/ESB For Hipsters

Monolithic Microservices

Struts!

One External View, Many Services

Order History

Reviews

Product Information

Recommendations

Inventory

Shipping

A Simple Architecture

Step #1 – Secure Your APIs

• Your APIs are the gateway into the
microservice architecture

• Anyone selling you Cross Site
Microservice Injection prevention,
is lying

• Issues like SQL Injection is still SQL
Injection, but we lose source/sink
visibility

8-12 May, 2017

Data and Asset Inventory

Deploying Code All Day, Every Day

• Once upon a time, we released 3-4 times a
year

• CI/CD, container orchestration, and
Platform-as-a-Service (PaaS) has changed
that

When Life Was Easy

Client (Web
Browser)

Web Application +
Apache Tomcat Database

Infrastructure-As-Code

• Code is now infrastructure

• Developer laptops often hold the keys to
the kingdom

• Fairly new-ish territory for many security
teams
– Immature organization practices = massive

business disruption

Infrastructure-As-Code

Infrastructure-As-Code

• Now, your architecture might be in a GitHub
repo

• Important to restrict who can commit to
master

• Important to review code merges (pull
requests, etc)

• Great for auditability and inventory
management, if done correctly

Containers and Orchestration

Serverless Functions

• Tools like AWS Lambda, Azure Cloud
Functions

• Stateless and short-lived

• Finish your work in 5 minutes or “die”

• Monorepos vs. distributed repositories

• Security tools with performance hit?
– Enjoy getting laughed at

Where’s My Data? Clean Up Your Toys

• Intentional persistence

• Message queues and commit logs

• Code repositories

• Developer laptops

• Zeppelin notebooks

• Everywhere?

8-12 May, 2017

Authentication

API Gateway Pattern

• API Gateway is the most prolific Microservice
authentication pattern

• Similar to the Façade pattern
• Encapsulates internal architecture
• Abstracts your services from authentication
• Many implementations

– AWS API Gateway
– Azure API Gateway
– Mashape Kong

API Gateway Pattern

API Gateway Pattern

• At my day job, we use AWS API Gateway +
Cognito to handle the heavy lifting

– https://aws.amazon.com/blogs/mobile/integra
ting-amazon-cognito-user-pools-with-api-
gateway/

– Cognito handles authenticating with
credentials, MFA, etc.

https://aws.amazon.com/blogs/mobile/integrating-amazon-cognito-user-pools-with-api-gateway/

API Gateway + Cognito

API Gateway Pattern

• Each request is signed, which provides an
additional layer of authentication
– https://docs.aws.amazon.com/apigateway/api-

reference/signing-requests/
– Integrate Lambda functions for pre/post processing

hooks
– Bonus: good architecture = breaks CSRF if done

correctly

• Can consume your Swagger files

https://docs.aws.amazon.com/apigateway/api-reference/signing-requests/

Once You Get Past The Gateway

• The gateway can share data
with downstream services

• Lambda function post-
processing

• Standard + Custom attributes

– Username, email

– Custom attributes for your
app

8-12 May, 2017

Access Control and Identity
Management

Decentralized Sanity

• So we’ve decentralized things, right?

• API Gateway + JWT can help

• Patterns like CQRS can architecturally limit
damage and exposure across interfaces

JSON Web Tokens (JWT)

• Love it or hate it, JWT allows us to pass
identity and claims across services

• We still need to consider the business rules
of each service, but we have a starting point

JSON Web Tokens (JWT)

Command Query Responsibility Segregation (CQRS)

• Command and query interfaces are separated

• Independent read and write models

• Possibly, independent data stores for read and
write

• We have a lot more granular control over
which services and users we authorize around
capabilities

Command Query Responsibility Segregation (CQRS)

What About Between Services?

• Think of scenarios like messaging between services

– Identify trusted publishers and subscribers

– Determine which services should consume your data, and
limit scope

– Apply authentication and topic-level authorization

Producer:

kafka-console-producer.sh --broker-list localhost:9092 --topic creditcard-stuff
This is a credit card # 1234567890123456
This is a credit card # 1234567890111111

Consumer:

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic creditcard-stuff --from-beginning

8-12 May, 2017

Securely Sharing Secrets

Keeping Secrets

• You don’t want to pass credentials around
in plain text (no-brainer, right?)

• There are options, but they vary with
mileage

Bad Ideas

Hardcoding credentials in your code

Hardcoding credentials in your Dockerfile

Using environment variables to pass secrets

Hardcoded Secrets

Secrets Via Environment Variables

docker run –it –e “DBUSER=dbuser” –e
“DBPASSWD=dbpasswd” mydbimage

Every process in your container can read
these variables

You risk leaking secrets via dashboards, logs
and history

A Perfect Solution?

• Not quite, but Docker leads the pack

• Kubernetes, DC/OS, OpenShift all have
options too

Passing Secrets To A Kubernetes Pod

Create Files Use a Secret

$ echo -n "administrator" > ./username.txt
$ echo -n "0XDEADB33F" > ./password.txt

Create Secrets

$ kubectl create secret generic db-user-pw
--from-file=./username.txt --
from-file=./password.txt secret "db-user-
pw" created

Use A Secret

"apiVersion": "v1",
"kind": "Pod",
"metadata": {
"name": "jackpod",
"namespace": "jack”

},
"spec": {
"containers": [{

"name": "cart-cache",
"image": "redis",
"volumeMounts": [{
"name": "redis-secrets",
"mountPath": "/etc/redis-secrets",
"readOnly": true

}]
"volumes": [{

"name": "foo",
"secret": {
"secretName": "mysecret"

}
}]

}
}

But Even The Good Solutions….

• By default, Kubernetes stores your credentials
in plain text on the server in etcd
– etcd is a distributed key-vaue store

– Stores and replicates cluster state

• However, this is a lot better than nothing

• Proposal to encrypt secrets at-rest
– https://github.com/kubernetes/community/pull/4

54

https://github.com/kubernetes/community/pull/454

OpenShift

Summary

• Increased complexity, with security
opportunities

• Things are more likely to spin out of control
vs. monolithic apps if you don’t get a
handle on them early

• It’s important to make security fit into
microservices, not the other way around

Thanks! Keep In Touch

• Email – jack@nvisium.com

• Twitter – https://twitter.com/jack_mannino

• Linkedin -
https://www.linkedin.com/in/jackmannino/

mailto:jack@nvisium.com
https://twitter.com/jack_mannino
https://www.linkedin.com/in/jackmannino/

Thank You to Our Sponsors

