

Node.js
Could a few lines of code

F@#k it all up?
Erez Yalon erez.yalon@checkmarx.com
Head of AppSec Research @ErezYalon

Could a few lines of code
F@#k it all up?

Short answer: YES!
Longer answer: Definitely YES!

What if the vulnerable line is this?
var x = require('nodepackage');

• 65%-90% of commercial application make use of Open
Source Software

• Open Source is great but….

• Node.js is a leading framework

• Some issues with node’s repository are concerning
from the security point of view

Open Source

The left-pad fiasco (M a rc h 2 0 1 6)

Azer Koçulu

A fairly anonymous developer that
decided to “Liberate” his Node.js
packages following a disagreement
with npm staff

Among his modules was a little
module named left-pad

npm ERR! 404 Registry returned 404 for GET on https://registry.npmjs.org/left-pad

npm ERR! 404 'left-pad' is not in the npm registry.
npm ERR! 404 You should bug the author to publish it (or use the name yourself!)

The left-pad fiasco

Left-pad was used by ~40 npm modules including React and Babel
(used by FaceBook, AirBnB and others)

The left-pad fiasco

First of all Azer is no longer anonymous.

He actually triggered an important discussion
within the community

Should an author be able to un-publish his work
without a process?

What happens to the available module names?

The npm platform
Node.js Package Manager

• Open source package manager
• “Find, share, and reuse packages of code from hundreds of

thousands of developers”
• Around 450K modules available

Some points to note about npm repo

• npm encourages the use of semver - semantic versioning.

Upgrade

2 – Major version
8 – Minor version
1 – Patch

Some points to note about npm repo

• npm encourages the use of semver - semantic versioning.

– Dependencies are not locked to a certain version by default.

– For any package, the author can push a new version at any time.

Upgrade

• npm utilizes persistent authentication to the npm server.

– Users are not logged out until they voluntarily do so.

Of course
I am

Superman.

Some points to note about npm repo

• Centralized registry – NPM utilizes a centralized registry

– Typing npm publish ships your code to this registry server, where it can
be installed by anyone.

– Any user who is currently logged in and types npm install may
allow any module to execute arbitrary publish commands

Some points to note about npm repo

Example time

“activedirectory”

LDAP client for
AuthN and AuthZ

4 Dependencies

~20K downloads last
month

4 Dependencies?
Let’s check

So simple - npm install <module name>

Lets take an example npm

4 Dependencies?

Underscore ldapjs bunyan async

lodash

dtrace-
provider verror vasync

once Ldap-filter

backoffdashdash once asn1

Asert-plus

mv

moment
safe-json-

stingify

dtrace-
provider

4+10+4+1=19

Lets take an example npm

lodash

lodash

What about lodash?
lodash

0 Dependencies?

30,683,087

downloads last

month!

45K Dependents!

Let’s take a look at some potential
scenarios

Ways to cause damage

• Create a useful module

– Some good old marketing

– Update it after it gets adoption

• Create module with similar name (Typo attacks)

• Taking over control of a legit account

Packages are identified by names (No unique identifier/key)

• Create a self replicating worm

Full report by Sam Saccone: https://www.kb.cert.org/CERT_WEB/services/vul-

notes.nsf/6eacfaeab94596f5852569290066a50b/018dbb99def6980185257f820013f175/$FILE/npmwormdisclosure.pdf

https://www.kb.cert.org/CERT_WEB/services/vul-notes.nsf/6eacfaeab94596f5852569290066a50b/018dbb99def6980185257f820013f175/$FILE/npmwormdisclosure.pdf

Creating a self replicating NPM worm
(Lifecycle Scripts)

"scripts": {
"start": "node create malicious_npm_module",
"predeploy": "echo im about to deploy",
"postdeploy": "echo ive deployed",
"prepublish": "coffee --bare --compile --output

lib/foo src/foo/*.coffee"

• Socially engineer an npm module owner to npm install an infected module
• Using installation scripts, the worm creates a new npm module

npm install
Hydra_A

John

Creating a self replicating NPM worm
(Persistent Authentication)

• Worm sets lifecycle hook on the new module to execute the worm on install
• Worm publishes the new module to the user's npm account

npm publish John
Legit 1
Legit 2

John
malicious_npm_module

Creating a self replicating NPM worm
(Semantic Versioning)

• Worm traverse through all user’s npm modules (publish permissions) and
adds the new malicious module as a dependency in their package.json.

• Worm publishes new versions to each of the modules with a version
bump at the patch level semver – masked as “hotfix”

John

"dependencies": {

"primus": "*",

"async": "~0.8.0",

"express": "4.2.x",

"malicious_npm_module": "

Package.json

From Malicious to Careless

What is wrong with this picture?

What we did

• Scan Node.js packages looking for vulnerabilties

– Top 50 popular packages

– Top 50 dependent-upon packages

– Other popular packages

• Analyze results

• Responsible Disclosure

– Contact dev

– Wait for patch

– Publish

npm top 50

https://www.npmjs.com/

https://www.npmjs.com/

Scan for security issues

What is wrong with
this picture?

What is wrong with this picture?

• ~300K downloads a month

• ~370 other npm packages are dependent on ecstatic

node-ecstatic

• PoC:

– 22Kb payload - 1 sec lag

– 35Kb payload - 3 sec lag

– 86Kb payload - server crashed

Developer Response

http://www.checkmarx.com/%00%00%00%

00%00%00 (...)

Developer Response

Other Scan Results

• Command Injection

– Variable from user input was used as an argument for an OS
command.

– Dev response:
“The flaw exists because the original author used it…

A possible solution is to delete the vulnerable file”.

Other Scan Results

• Command Injection

• Stored XSS

• Denial of Service by Loop

• Denial of Service by Regex (ReDoS)

• CSV Injection

• Insecure Randomness

• Open Redirect

So how do we
protect

ourselves?

Be a Safe User!

• Inspect the code - http://registry.npmjs.org/MODULENAME/-
/MODULENAME-VERSION.tgz

• Check if there are any hooks: npm show $module scripts

• Don’t allow scripts to execute automatically: npm install –ignorescripts

• Use npm shrinkwrap to lock down your own dependencies

• Sometimes it’s better to write your own functions!

• Analyze your code but your code includes your dependencies!

• Log out!

http://registry.npmjs.org/MODULENAME/-/MODULENAME-VERSION.tgz

Be a Safe Corporate!
• Run a local NPM repo

• Prevent installing from main registry

Thank You.

Erez Yalon erez.yalon@checkmarx.com
Head of AppSec Research @ErezYalon

